
Project Documentation:
Building a Stewart-Platform

Hendrik Burgdörfer
Fabian Rühle

Interdisciplinary Center for Scientific Computing
Ruprecht-Karls Universität Heidelberg

01.11.2006 to 01.04.2007

Contents
1 Motivation 1

2 Construction of the hexapod 2
2.1 Actuators . 2
2.2 Platform . 2

3 Platform control 4
3.1 Communication protocol . 4
3.2 Platform Commisioning . 6

4 The ICP 6

5 Graphical User Interface 8
5.1 General Remarks . 8
5.2 The Menu Bar . 8

5.2.1 File . 8
5.2.2 Debug . 8
5.2.3 Help . 9

5.3 Program files . 9
5.3.1 *.pos files . 9
5.3.2 config.cfg file . 9

5.4 Program Structure . 9
5.5 Algorithmic Realization . 10

6 Appendix i
6.1 Step Motor Data Sheet . i
6.2 Parts . i
6.3 RS232 to IIC Connection Module Data Sheet ii
6.4 C Control Unit 2 Data Sheet . iii
6.5 Interface Module Data Sheet . iv
6.6 IIC Bus Switch Data Sheet . v

References vi

Stewart - Platform Documentation

1 Motivation
A Stewart Platform or Hexapod is a special parallel kinematic machine. The first name is in
honor of D. Stewart who was the first to introduce such a concept in 1965. The second name
originates from the greek words hexa: six and pod: foot.
As the name tells, it consists of six actuators whose length can be varied. The actuators are
fixed at one end and are connected to a platform at the other. By changing the length of
the different actuators one can access six degrees of freedom - three translational and three
rotational degrees.
Hexapods are widely used in flight simulators. Here they move the cabin with the passengers
according to the movie that is being displayed or the user action that is performed. Hexapods
can also be used to mount large telescopes. They can then be repositioned to point to any
desired position in the sky. Further applications in industries include the flexible positioning
of workpieces under fixed tools and the transport of sensitive or hazardous material that has
to be kept in a specific postion at all times during the transport.
The advantages of a hexapod are:

• High dynamics

• Good payload to net weight ratio

• Great postioning precision due to parallel kinematic

• High flexibility with many accessible degrees of freedom

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 1

Stewart - Platform Documentation

2 Construction of the hexapod
This section describes the different steps that have to be performed to assemble the Stewart-
Platform. Basically all actuators that can be bought work either hydraulically or pneumatically.
They have a very high payload and accuracy and are designed for industrial use. However, we
needed a simple, inexpensive solution that provides the basic features of a hexapod without
causing too much costs and overhead. So we decided to assemble the actuators ourselves.

2.1 Actuators

The six actuators basically consist of a thread rod and a nut. One end of the tread rod is
connected via a coupler to a cardan joint which in turn connects to a bipolar stepper motor.
The nut is attached to one end of a brazen pipe. At the other end of the pipe one finds a ball
joint and a self-constructed connector.

Figure 1: Schematic drawing of one linear actuator

The length of the tread rod is approximately 15 cm. The maximum bent for the cardan
joint is 45 degree. The maximum range for the ball joint at the other end is 35 degree. The step
motor supports 1.8 degree steps thus there are 200 steps per rotation (for more information see
6.1).

2.2 Platform

The platform was constructed according to Figure 2. The actuators are connected to the
platform via a skrew that leads through the ball joint of the actuator and an angle bracket at
the platform (compare Figure 3). To ensure maximum flexibility of the ball joint while still
keeping its position fixed we inserted two thin brazen pipes between the nut and the ball joint
at either side.

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 2

Stewart - Platform Documentation

Figure 2: Schematic drawing of the platform

Figure 3: Schematic drawing of the fixation device for the actuators

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 3

Stewart - Platform Documentation

3 Platform control
The platform is controlled via a graphical user interface at the PC. Data is sent over the serial
port (RS232) to a connector [4] (compare Figure 9). This connector basically translates from
COM to IIC. The IIC bus then goes to a microcontroller [5] (Figure 10) which does some
consistency checks and translates the signal coming from the UI into a signal readable by the
six stepper modules [6] (Figure 11) which control the motion of the motors. The signal is
distributed to the stepper modules via a switch[6] (Figure 12). The GUI was programmed
completely in C# and the microcontroller in CCBASIC. The setup of the different parts can
be seen in the connection diagram in Figure 4.

Figure 4: Connection diagram for the Stewart platform components

3.1 Communication protocol

Figure 5: Communication proto-
col

To send the data from the UI to the microcontroller we im-
plemented an easy handshake protocol. By using a micro-
controller as arbiter rather than writing direcly from COM
on the IIC bus we can ensure that the data sent is correct
by counterchecking it on the other side. This filters fal-
sified data that might come from an inconsistent state of
the computer (e.g. during a system crash) or from uncon-
trollable bit flips during communication. These data could
lead to repositioning commands that are mechanically im-
possible and could thus result in damage of the platform or
the motor or even both. Or it could lead to an irreversible
reprogramming of the OTP memory of a stepper module
which renders the chip unuseful.
First C# sends a synchronization byte in order to set the
microcontroller into a well-defined state. Then a byte that
initializes the communication is sent and confirmed upon
derivation. After that C# sends for special actions (i.e.
everything but a move motor command) a command byte indicating what action shall be

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 4

Stewart - Platform Documentation

performed. After receiving the acknowledgement from the microcontroller, C# sends action-
specific parameters. At the end the microcontroller acknowledges again and the communication
cycle is completed. Figure 5 illustrates the process.
"0x" indicates hexadecimal representation. Table 1 provides a lsit with the allowed values for
the bytes introduced in Figure 5. The action parameter itself is one byte containing information

Byte Value (HEX) Meaning
Sync 0x10 Brings microprocessor into a well-defined state

CommInit 0xFF Indicates communication request
ACK 0x00 Acknowledgement of received data
CMD - If left out, action move motor is performed

0xC0 Sends status request to wake up motors
0xE0 Causes the microcontroller to shut down
0xF0 Indicates a status report request

ERR 0x11 Wrong number of ‘1’ in action parameter
0x22 Wrong parity of action parameter

Table 1: List of communication bytes

about the motor that shall be addressed and the direction of motion. With bit zero being the
least significant bit, it reads as follows:

Figure 6: Communication byte composition

Bit Meaning Value (Binary) Semantic
(2:0) Motor Number 000 & 111 N/A

001 Motor1
010 Motor2
011 Motor3
100 Motor4
101 Motor5
110 Motor6

3 Direction of motion 0 counterclockwise (up)
1 clockwise(down)

(4:6) Number of ‘1’ Binary encoding of number of
ones in bits (3:0)

7 Parity Ensures even number of ones in bit (0:7)

Table 2: List of communication bytes

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 5

Stewart - Platform Documentation

3.2 Platform Commisioning

Firstly, the motor power supply has to be connected to an appropriate 12V DC power supply.
After that the COM → IIC connector has to be plugged in, also supplied with 12V. When
Sharp is closed or after a long idle time, the C-Control or the connector shuts down. In this
case, the power supply must be cut and reinstalled in order to have the C-Control reboot. If not
all motors are spinning correctly, probably the power supply does not provide enough current
respectively power.

4 The ICP
On the microprocessor of the C-Control Unit the Icp (Intercommunicational Program) is stored.
The task of Icp is to transform information received by the terminal program (Sharp) into
information readable for the IIC stepper modules connected to the C-Control and vice versa.
If the C-Control Unit is jumpered correctly (see [3] for more information), Icp runs automati-
cally as soon as the pins GND and V5+ are connected to a charge pump.
First of all Icp sends a ’Get Full Status1’ command to all IIC stepper modules and receives the
information sent back by them. This is necessary to ’wake up’ the modules i.e. to get them out
of the shutdown mode which they are set in automatically after connecting the modules to the
mains supply (for more information see [3]). The information they send back is unimportant
at this time, the only purpose is to wake up the IIC stepper modules.
After that Icp sends the ’SetMotorParam’ command to set the motor parameters. 9 parameters
are set within this procedure (please see [3] for detailed information):
’Irun’ and ’Ihold’ are both set to 0xD.
’Vmax’ and ’Vmin’ are both set to 0xF.
’SecPos’ is set to 0 and so is ’Shaft’. ’Acc’ is set to 0xF.
’AccShape’ is set to 0, and ’StepMode’ is set to 1/16.
The parameters are the same for each stepper.
After the motor parameters are set, Icp jumps into an endless loop where it reads the incoming
data from the terminal program (Sharp) continuously.
If a data byte 0xFF (0x means hexadecimal) is received, Icp leaves the loop and sends 0x00
to the terminal program. Then it reads the byte that comes in immediatley next; normally
that would be a positioning byte from Sharp . Such a byte consists of four information bits -
namely the four least significant bits - and four check bits.
The three least significant bits encode the number of the IIC stepper module the information
should be sent to, it reaches from binary 001 to 110.
The 4th bit encodes the direction the stepper should turn. (0 for clockwise and 1 for counter-
clockwise rotation).
The 5th, 6th and 7th bit encode the number of information bits that are 1 in binary representa-
tion, for example .010.... if two of the information bits are 1.
The most significant bit is a parity bit such that the number of bits that are 1 in the whole
byte is even.
After receiving the positioning byte, Icp generates the adress of the IIC stepper module out of
the three LSB and checks whether the four check bits fit the information bits. It then resets
the position counter of the corresponding module, i.e. the actual position is set to 0. The next
command sets the target position to 1 respectively -1 (binary complement of 1), depending
on the direction of rotation that was received with the 4th information bit from the terminal
program.
After finishing the communication with the IIC stepper module, Icp sends 0x00 to the termi-

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 6

Stewart - Platform Documentation

nal program to signal readiness to receive a new command and jumps back into the endless loop.

In case that the binary number of information bits that are 1, encoded in the check bits,
doesn’t fit the number of information bits that are in fact 1, Icp doesn’t communicate with
any IIC stepper module but sends back 0x11 to the terminal program. After that, it jumps
back into the endless loop.
In case that the number of bits that are 1 in the whole byte is odd, Icp doesn’t start a com-
munication with any module either but sends back 0x22 to the terminal program and jumps
back into the endless loop.

Beside the positioning bytes, there are three special bytes that can be sent by the terminal
program immediately after the 0xFF byte that makes Icp break the endless loop. These spe-
cial bytes are 0x10, 0xE0 and 0xF0.
The 0x10 byte makes the Icp jump back into the endless loop. Icp is constructed in a way
that whenever 0x10 is received it jumps back into the loop, so after sending 0x10 one can be
sure which state Icp is in. That is important especially in cases one assumes that the terminal
program and the Icp aren’t synchronized anymore for whatever reason. The first byte sent by
the terminal program to Icp should always be 0x10.
0xE0 is the kill signal which terminates Icp immediately.
0xF0 is the information command. It allows the terminal program to get several information
about temperature, electrical defects etc. from an IIC stepper module. When receiving 0xF0,
Icp sends back 0x00 and reads the byte that comes in immediately next. Icp uses that byte
only to filter out the module number from the three LSB, so the terminal program can send
a usual positioning byte for the stepper it wants to get the information from. After that, Icp
starts the communication with the corresponding IIC module and sends the two commands
’Get Full Status1’ and ’Get Full Status2’. The information received from the module is stored
in 12 bytes and sent to the terminal program after sending a 0x00 byte first. Following infor-
mation is encoded in the 12 bytes (see [3] for detailed information.): commands.

1st byte: adress of the module
2nd byte: Irun(3:0) Ihold(3:0)
3rd byte: Vmax(3:0) Vmin(3:0)
4th byte: AccShape StepMode(1:0) Shaft ACC(3:0)
5th byte: VdReset StepLoss ElDef UV2 TSD TW Tinfo(1:0)
6th byte: Motion(2:0) ESW OVC1 OVC2 1 CPFail
7th byte: ActPos(15:8)
8th byte: ActPos(7:0)
9th byte: TagPos(15:8)
10th byte: TagPos(7:0)
11th byte: SecPos(7:0)
12th byte: 1 1 1 1 1 1 SecPos(10:8)

After the transmition is finished, the Icp jumps back to the endless loop to wait for further
commands

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 7

Stewart - Platform Documentation

5 Graphical User Interface

5.1 General Remarks

The graphical user interface was programmed with C#. Its name is Sharp in honor of the
language that we used for programming. At the same time it is an acronym for Supported
Hexapod Actuator Repositioning Program. The user can preselect a position for the Stewart
Platform which is illustrated graphically. Once the postion is confirmed, C# checks whether the
position is reachable from the current one (i.e. whether the actuators can be lowered or raised
enough). If this is the case the new actuator length is computed from the desired position.
This length is then translated in a number of rotations which is sent via the RS232 interface
to the microcontroller. Otherwise the user is asked to specify a new valid position.

5.2 The Menu Bar

5.2.1 File

The following subchapter will shorty introduce Sharp and its functionalities

• Open Position: This allows the user to open a previously saved position file. Note
that the position will only be loaded into the graphical preview (for more information
see Section 5.3). In order to have the Stewart-Platform go to this position the "Move
platform" button must still be pressed.

• Save Position As...: This allows for saving the current position of the platform. Note
that here again only the postion that is currently selected in the preview is saved, not the
actual position the platform is in (for more information see Section 5.3).

• Settings...: Here one can specify the COM-port which connects to the actuator control
and the default path for opening and saving files

• Bullriding Mode: The user enters a timespan in seconds during which Sharp computes
random positions for the platform.

• Exit: Closes the program.

5.2.2 Debug

• Recovery Mode: As there are no sensors at the platform it is impossible to find its
current position once the program files storing this information are in an inconsistent
state, which might come from a system crash or improper treatment of the program files
(for more information see Section 5.3). In this case the user has to reset the platform
manually to a predefined position (all actuators lowered as much as possible). This must
be done by specifying manually the amount and directions of rotations for each actuator.
Upon leaving the recovery mode the program files are updated and Sharp can be used
normally again.

• Motor status: This provides a list of data characterizing the motors of the actuators.
Among these information are temperature, current and voltage supply and information
about problems and errors within the step motor.

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 8

Stewart - Platform Documentation

5.2.3 Help

• Sharp Help: Explains the functionality of Sharp with screenshots and comments.

• About: Displays version and program information of Sharp .

5.3 Program files

Here the principal way how Sharp stores the platform information is explained.

5.3.1 *.pos files

These are user-generated position files. They store in plain ASCII the position vector of the
head of each actuator followed by the amount that has been rotated or translated with respect
to the default position:

x position of actuator 1
y position of actuator 1
z position of actuator 1
x position of actuator 2
...
z position of actuator 6
Amount of translation about x axis
Amount of translation about y axis
Amount of translation about z axis
Amount of rotation about x axis
Amount of rotation about y axis
Amount of rotation about z axis

5.3.2 config.cfg file

This file is generated by Sharp and here it stores all program information. This is also the file
used for the initial load at the startup of the program. Besides the information of the preview,
it contains information about the user-specified program settings and the position of the real
actuators. This file should never be manipulated, replaced, edited or deleted, as this results in
unreconstructable loss of information of the platform position! The information is also stored
as ASCII characters as follows:

COM Port connecting to the microprocessor
Default path for file dialogs
Information about the position of the platform stored in the same way as in Section 5.3.1
Information about the position of the preview stored in the same way as in Section 5.3.1

5.4 Program Structure

The program consists mainly of five form classes for the several GUI’s. Then there is an abstract
class which holds the basic parameters and is inherited by the graphical platform class and the
real platform class. Additionally an actuator class which has actuator specific members and
methods is implemented. Furthermore there is a motor class which implements methods for

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 9

Stewart - Platform Documentation

communicaton with and movement of the motors. A vector class with overridden mathematical
operators simplifies storing and manipulating the position information. The UML diagram is
shown below in Figure 7.

Figure 7: Simplified UML diagram for Sharp

5.5 Algorithmic Realization

Each actuator is represented by a threedimensional vector. The problem is that from the
knowledge of the total amount of translation and rotation about each axes, the position of the
platform cannot be reconstructed as rotations about different axes do not commute. Thus each
motion command must be processed immediately.
The new position is computed for translations by simply adding a constant offset to the respec-
tive coordinate. For rotations all vectors representing the actuators are moved to the origin,
multiplied with the standard rotation matrices in R3 and then brought back to the real posi-
tion.
For the preview, the same action is performed. Subsequently the vectors are projected into
a twodimensional plane with the third axis pointing at 45°with a contraction factor of

√
2

2
to

suggest a threedimensional effect.
The so computed new position is then translated into a rotation amount and direction and
written on the RS232 bus in plain ASCII as explained in Section 3.1

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg 10

Stewart - Platform Documentation

6 Appendix

6.1 Step Motor Data Sheet

Figure 8: Data sheet of the step motor [1]

6.2 Parts

This is a list of several parts that were used for the construction of the Stewart-Platform.

article quantity article number at Conrad®

Step Motor SM 42051 6 198398-62
I2C Stepper Module 6 198266-62

C-Control Unit M 2.0 1 198822-62
Adapter RS232 → I2C 1 198834-62

I2C-Bus Wire 8 198876-62
Cardan Joint 6 226467-62

Inset Piece � 5 mm 6 226505-29
Inset Piece M4 6 226513-29
Thread Rod 1 237108-62
Brazen Pipe 1 221797-62
Ball Joint 6 216488-62

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg i

Stewart - Platform Documentation

6.3 RS232 to IIC Connection Module Data Sheet

Figure 9: Data sheet of Connection Module [4]

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg ii

Stewart - Platform Documentation

6.4 C Control Unit 2 Data Sheet

Figure 10: Data sheet of C Control [5]

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg iii

Stewart - Platform Documentation

6.5 Interface Module Data Sheet

Figure 11: Data sheet of Interface Module [6]

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg iv

Stewart - Platform Documentation

6.6 IIC Bus Switch Data Sheet

Figure 12: Data sheet of the Switch [6]

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg v

Stewart - Platform Documentation

References
[1] Step motor data sheet. Accessed 03/07. http://www2.produktinfo.conrad.com/

datenblaetter/175000-199999/198398-da-01-en-Schrittmotor_SM_42051.pdf

[2] TMC222 data sheet. Accessed 03/07. http://www.c-control-
support.net/downloads/tmc222.pdf

[3] C-Control CCBASIC Manual. Accessed 03/07. http://www.c-control-
support.net/downloads/MANUAL_M2.0_M1.2.pdf

[4] C-Control Connection Interface Module. Accessed 03/07. http://www.c-control-
support.net/downloads/G_MANUAL_BA002_PROGRAMMER_A5.pdf

[5] C-Control Unit 2 Hardware Manual. Accessed 03/07. http://www.c-control-
support.net/downloads/G_MANUAL_BA001_UNITs_A4.pdf

[6] IIC Bus Interface Module. Accessed 03/07. http://www.c-control-
support.net/downloads/BA005.pdf

©2007, Hendrik Burgdörfer and Fabian Rühle, Universität Heidelberg vi

http://www2.produktinfo.conrad.com/datenblaetter/175000-199999/198398-da-01-en-Schrittmotor_SM_42051.pdf
http://www2.produktinfo.conrad.com/datenblaetter/175000-199999/198398-da-01-en-Schrittmotor_SM_42051.pdf
http://www.c-control-support.net/downloads/tmc222.pdf
http://www.c-control-support.net/downloads/tmc222.pdf
http://www.c-control-support.net/downloads/MANUAL_M2.0_M1.2.pdf
http://www.c-control-support.net/downloads/MANUAL_M2.0_M1.2.pdf
http://www.c-control-support.net/downloads/G_MANUAL_BA002_PROGRAMMER_A5.pdf
http://www.c-control-support.net/downloads/G_MANUAL_BA002_PROGRAMMER_A5.pdf
http://www.c-control-support.net/downloads/G_MANUAL_BA001_UNITs_A4.pdf
http://www.c-control-support.net/downloads/G_MANUAL_BA001_UNITs_A4.pdf
http://www.c-control-support.net/downloads/BA005.pdf
http://www.c-control-support.net/downloads/BA005.pdf

	Motivation
	Construction of the hexapod
	Actuators
	Platform

	Platform control
	Communication protocol
	Platform Commisioning

	The ICP
	Graphical User Interface
	General Remarks
	The Menu Bar
	File
	Debug
	Help

	Program files
	*.pos files
	config.cfg file

	Program Structure
	Algorithmic Realization

	Appendix
	Step Motor Data Sheet
	Parts
	RS232 to IIC Connection Module Data Sheet
	C Control Unit 2 Data Sheet
	Interface Module Data Sheet
	IIC Bus Switch Data Sheet

	References

