AstroFlight (2D Physics Game)

A beginner's practical by Christopher Brückner

AstroFlight

- Concept of the game
- Celestial mechanics
- Rendering games
- Visualizing scalar fields
- Outlook
- Demonstration



Gravity in most videogames

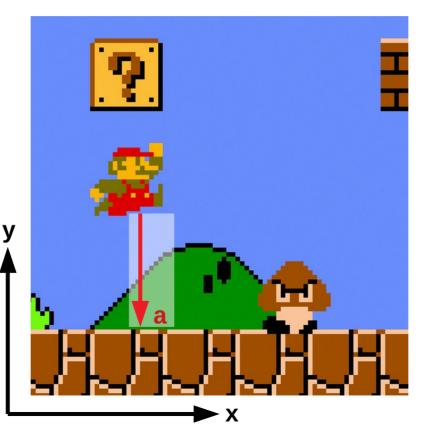
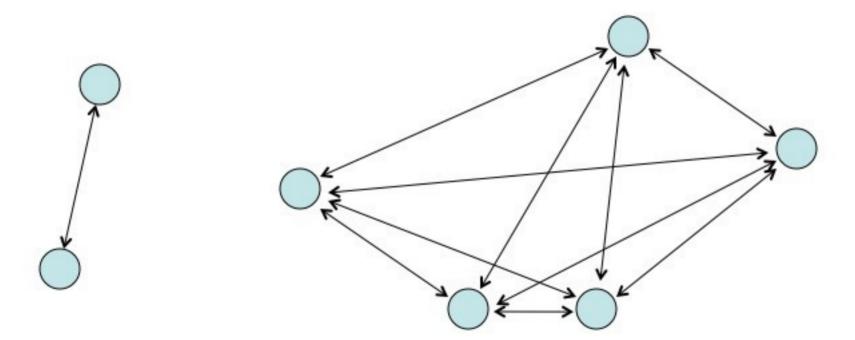


Image source: https://emulatoronline.com/nes-games/super-mario-bros/

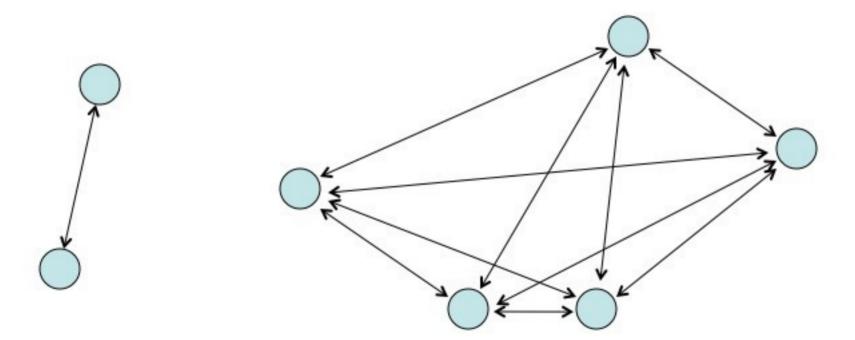
Gravity on a bigger scale



LEVEL: 2_SLIDE2 SCORE: 0

LAUNCH SPEED: 3.0 LAUNCH ANGLE: 84.3

Gravity on a bigger scale



LEVEL: 2_SLIDE2 SCORE: 0

LAUNCH SPEED: 3.0

LAUNCH ANGLE: 84.3

7

LAUNCH SPEED: 4.3 LAUNCH ANGLE: 133.0

SCORE: 300

LEVEL: 2_SLIDEZ

LEVEL: 2_SLIDE2 SCORE: 500

LAUNCH SPEED: 3.8 LAUNCH ANGLE: 86.1

VON

LAUNCH SPEED: 5.6 LAUNCH ANGLE: 327.1

SCORE: 0 PAUSED

LEVEL: 2_SLIDEZ

10

Concept of the game: Summary

- Simplified physics model
- Multiple forces acting upon the player
- Player has no control after launch
 - \rightarrow Forces are not his enemy, but his tool
- Terraform planets to earn bonus points

Goals

Main Goal: Reach the planet marked with a flag

Bonus goals \rightarrow Exploitation of multiple possible solutions!

- 1. Terraform all planets
- 2. Collect a satellite
- 3. Land directly on the flag
- 4. Find the shortest / quickest path
- 5. Reach the highest score

LAUNCH SPEED: 4.3 LAUNCH ANGLE: 133.0

SCORE: 300

LEVEL: 2_SLIDEZ

Movement

Equations of motion:

Acceleration $\vec{a}(t)$ Velocity $\vec{v}(t) = \vec{v_0} + \int \vec{a}(t) dt$ Displacement $\vec{x}(t) = \vec{x_0} + \int \vec{v}(t) dt$

Force
$$\vec{F}(t) = m\vec{a}(t)$$

Equations in AstroFlight:

$$m_{s}\vec{a}(t) = \sum_{i} \frac{Gm_{s}m_{i}}{\|\vec{r}_{si}(t)\|^{3}}\vec{r}_{si}(t)$$

$$\vec{v}(t) = \vec{v}(t-1) + \vec{a}(t)$$

$$\vec{x}(t) = \vec{x}(t-1) + \vec{v}(t)$$

$$G = 6.6743 \left(\cdot 10^{-11} \frac{m^3}{kg s^2} \right)$$

Movement

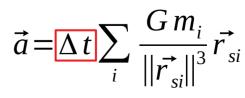
- 1 second = 60 ticks
- 1 tick = 1 evaluation of all motion equations
- \rightarrow constant game speed with 60 FPS

 \rightarrow can be problematic in more complex games

Movement

- 1 second = 60 ticks
- 1 tick = 1 evaluation of all motion equations
- \rightarrow constant game speed with 60 FPS

- \rightarrow can be problematic in more complex games
- \rightarrow possible solution: variable FPS



Interpolation

Interpolated Frame Tick 1 Tick 2 Frame 1 Frame 2 t_1 \mathbf{t}_2 **X**₁ **X**₂ $t \in (t_1, t_2)$

Interpolation

Naive approach: Wait 1 tick and interpolate directly

Compute x_1 at t_1

Compute x_2 at t_2

Render frame 1

While waiting for t₃:

Interpolate x_t at $t \in (t_1, t_2)$ and render frame t

```
Compute x_3 at t_3
```

Render frame 2

Interpolation

Better approach: Prediction

Compute x_1 at t_1 and render frame 1

While waiting for t₂:

Predict x_t at $t \in (t_1, t_2)$ and render frame t

$$x_t = x_1 + \Delta t v_1 + \frac{\Delta t^2}{2} a_1 \qquad \Delta t = t - t_1$$

Important forces

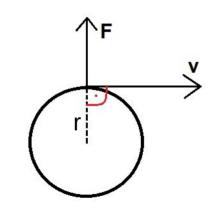
Gravitational force

$$\frac{Gm_1m_2}{\|\vec{r_{12}}\|^2}\hat{r_{12}}$$

$$G = 6.6743 \left(\cdot 10^{-11} \frac{m^3}{kg s^2} \right)$$

Centrifugal force

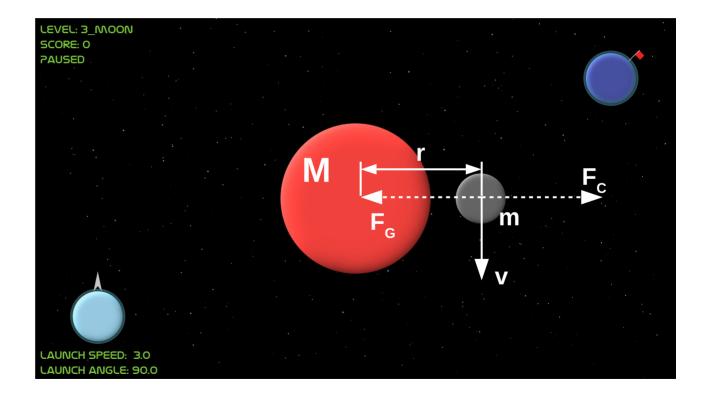
$$m\frac{v^2}{r}\hat{r}$$



m2

m1

Celestial mechanics

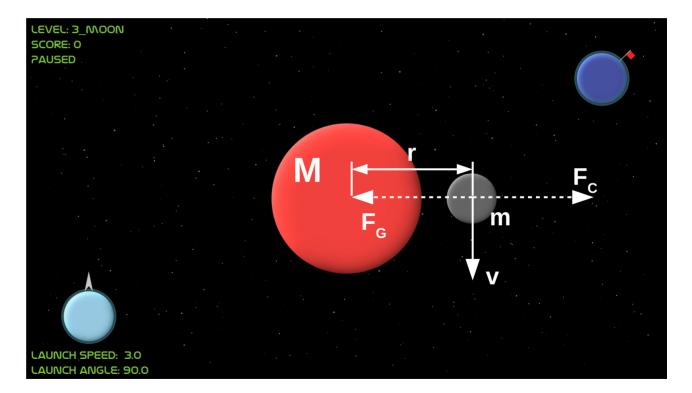


Celestial mechanics

 $|F_{Centrifugal}| = |F_{Gravity}|$

$$m\frac{v^2}{r} = G\frac{Mm}{r^2}$$

 $v = \sqrt{\frac{GM}{r}}$

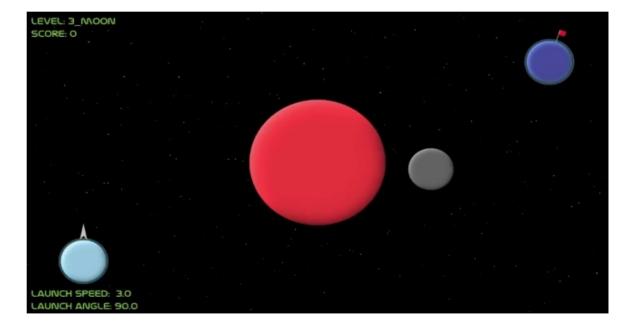


Celestial mechanics

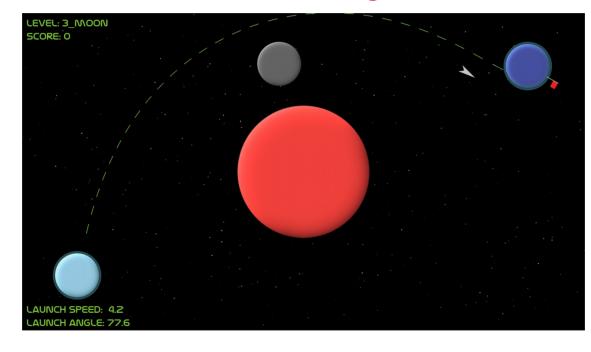
 $|F_{Centrifugal}| = |F_{Gravity}|$

$$m\frac{v^2}{r} = G\frac{Mm}{r^2}$$

 $v = \sqrt{\frac{GM}{r}}$

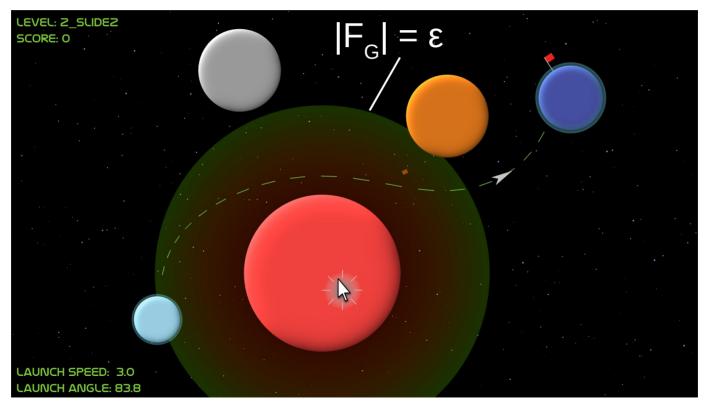


Non-autonomous systems

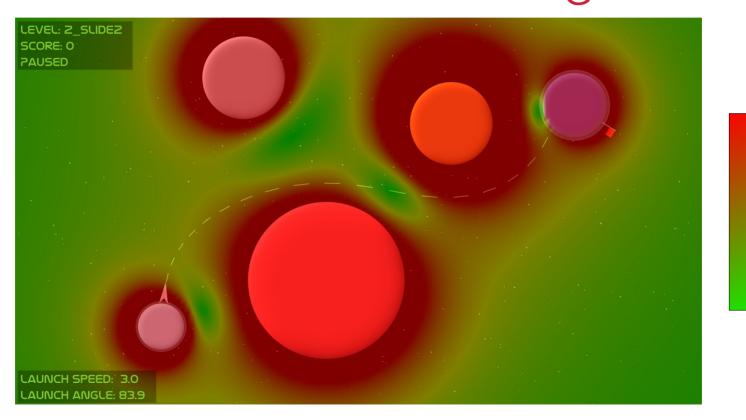


→ Less predictability!

$r_1 = r_2 \neq m_1 = m_2$



Better visualization of |F_G|



Outlook

Possible further implementations:

- Bonus goals
- Level editor
- Procedual level generation
- N-body problem
- Creating a "pseudo-universe"

blackhole.lvl

0

2

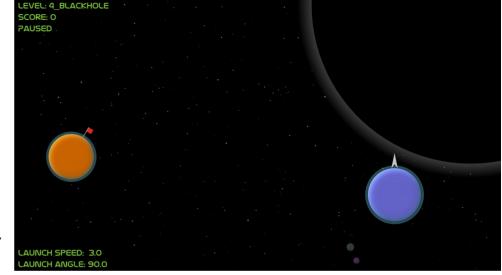
130 70 100 100 200 1000 200 0.2 0.5 100 60 200 100 0 150 300 0.01 -0.1 2

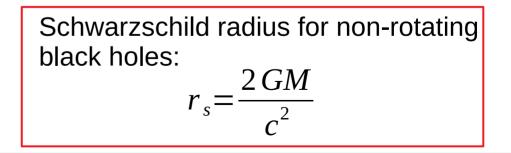
 $5\ 10\ 50\ 60\ 50\ 0\ 180\ 230\ 1$

3 8 70 40 80 0 200 240 1

1

1700 1200 700 0 0





Outlook

Possible further implementations:

- Bonus goals
- Level editor
- Procedual level generation
- N-body problem
- Creating a "pseudo-universe"

Pseudo universe

- Three elements R, G, B with different masses
- Planets are composed of these elements
- Mass of planet = Area * density
- Is the planet terraformable?
 - \rightarrow Composition / Color

Any questions?