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Abstract: The present work identifies and generalizes two different classes of
self-contacting binary trees that are separately mapped along the piecewise smooth
boundary of the symmetric binary trees Mandelbrot set. The only common tree of
these two classes of fractals is the Sierpinski 2-gon gasket tree, commonly known as
H-tree, and it is mapped in a topological critical point of the trees Mset boundary.
The critical points for other Sierpinski gasket trees (symmetric trees with b equally-
spaced branches per node) play an analogous role. Using these critical points as
references, we develop a notation to parameterize and classify all the families of
generalized symmetric fractal trees. We deduce their boundary equations where
the tip-to-tip self-contact takes place, and we provide several diagrams, their frac-
tal dimension and examples of self-contacting fractal trees with N -fold rotational
symmetry.
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1. Introduction

One of the most spectacular and accessible phenomena related to the bilateral

symmetry is the generation of video-feedback fractal trees in a computer screen.

If the screen has a mirror effect enabled, and a webcam starts to record its own

output, the system will run into a loop that traps, transforms and copies the

recorded frames again and again until they are reduced to mere fixed points forming

a fractal attractor. Changing the camera roll angle or the distance to the screen,

different fractal patterns emerge. The attractors of this home-made dynamical
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system are analogous to a family of IFS fractals generated by a pair of affine

transforms. Figure 1 compares four video-feedback attractors with their associated

symmetric binary fractal trees.

Figure 1: Video-feedback patterns generated using an external webcam, and their fractal trees.
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Figure 2 shows the Mandelbrot set for the following family of IFS:

{C; w1(z) = λz + 1, w2(z) = λ∗z − 1}, P = {λ ∈ C : |λ| < 1}

Where λ∗ = (λ1 + iλ2)
∗ = (λ1 − iλ2) is the complex conjugate of λ, the absolute

value |λ| is the length r of the first pair of branches, and the argument arg(λ)

is the angle θ between the linear extension of the trunk and the first left branch

L. The transformations w1(z) and w2(z) are similitudes of scaling factor r, that

rotate in opposite directions through the same angle θ.

Figure 2: The Mandelbrot Set for Symmetric Binary Trees T2(r, θ).
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The tree branches are drawn by joining the IFS points generated at each iteration

with their corresponding ancestors. Notice that we have set the complex plane’s

real line R to be oriented vertically in order to draw the trees looking upwards.

The algebraic curves of this Mandelbrot set boundary were found by Hardin and

Barnsley in 1985 [Hardin][Barnsley1988][Barnsley1992]. They proved that this

Mandelbrot set is connected, its boundary is the union of a countable set of smooth

curves, and is piecewise differentiable. Their work considered solely the attractors

of this IFS family, and the associated fractal trees were left behind. Some years

after, Mandelbrot and Frame studied self-contacting symmetric binary trees in

detail [Mandelbrot], and independently obtained the same union of a countable

set of smooth curves that ensures tip-to-tip self-contact for symmetric binary trees.

They didn’t related these trees to the earlier work of Hardin and Barnsley, but, as

it is shown in [Wolfram], both approaches are equivalent and should be presented

in a unified way.

Figures 2 and 3 indicate different aspects of the piecewise smooth Mandelbrot

set. The dark region of the Mandelbrot set is were all the self-avoiding trees are

mapped. Their tip set or attractor is disconnected forming thus a Cantor set in

the complex plane with dimension D = log(2)/log(1/r). For r 6 1/2 the trees are

always self-avoiding, regardless of the value of θ. However, for 1/2 < r < 1, the

tree may or may not be self-avoiding, depending on θ.

When the value r starts to increase the tip set starts to condensate until it reaches

a critical value rsc where the tip set becomes connected. All the trees that have the

top of its first pair of branches, L and R, placed in the map’s boundary are self-

contacting binary fractal trees T2(rsc, θ). Outside the critical boundary r > rsc(θ)

all the trees are self-overlapping and they inevitably contain branch-crossing.

The bilateral mirror symmetry around the linear extension of the trunk enables us

to label all the branches with addresses that are finite sequences of letters L and

R. Therefore the branches are denumerable but the branch tips are not as they

are defined by an infinite sequence, see Figure 4. When the infinite address of a

tip is eventually periodic, closed expressions for the coordinates can be found by

summing the appropriate geometric series. A symmetric binary tree depends only

on two parameters: the angle θ between the branch L and the linear extension of

the trunk E, and the scaling ratio r < 1 which is also the length of the L and R

pair of branches.
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The origin (0, 0) of our coordinate system is placed at the top of the canonical

trunk of length 1. The turning angles associated to the address letters L and R

in symmetric binary trees T2(r, θ) are L → (θ) and R → (−θ). For example, the

coordinates (x, y) of the branch LR are found to be:

(r1sinθ + r2sin(θ + (−θ)), r1cosθ + r2cos(θ + (−θ)) = (rsinθ, rcosθ + r2).

Therefore, the coordinates of tips with periodic sequences can be easily computed,

for example, the tip L∞ has coordinates (x, y):

(rsinθ+ r2sin(2θ) + ..., rcosθ + r2cos(2θ) + ...) = ( r sin(θ)
r2−2r cos(θ)+1 ,−

r(r−cos(θ))
r2−2r cos(θ)+1).

Figure 4: A Self-Contacting Symmetric Binary Tree with relevant address LR3(LR)∞.

Figure 4 shows how the self-contacting equation rsc(θ) is deduced from the tip

address LR3(LR)∞ with the condition that its tip must lie in the linear extension

of the trunk, i.e. its horizontal coordinate must be zero, x = 0. Therefore, careful

observations of the relevant self-contacting tip addresses for different intervals of

θ can be used to deduce all the equations that ensure self-contact, rsc(θ).
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For 3π
4 ≤ θ ≤ π, the relevant branch tip is L(LR)∞ which provides the following

expression:

r sin(+θ) +
∑

∞

i=1 sin(θ + θ)r2i +
∑

∞

i=1 sin(θ − θ + θ)r2i+1 = 0

which can be reduced to r sin(θ) − r2 sin(2θ)
r2−1 − r3 sin(θ)

r2−1 = 0, and solved for r:

rsc = −
1

2 cos(θ)
(1)

For the interval π
2 ≤ θ ≤ 3π

4 , the relevant tip address is L2(LR)∞ and its related

equation is:

rsc =
2 sin(θ)

8
√

sin6(θ) cos2(θ) − sin(4θ)
(2)

For 0 < θ ≤
π

2
, there is an infinite countable set of smooth pieces, and the desired

branch tips are given by the addresses LRj+2(LR)∞ for the intervals π
2j+2 ≤ θ ≤

π
2j and j values ranging from 1 to ∞. The implicit equations deduced from this

kind of addresses are given by:

r2
(

rj+1(− cos(θ(j + 1))) + rj+2 cos(θj)− r cos(θ) + 1
)

r2 − 2r cos(θ) + 1
=

1

2
(3)

The critical angle θ =
π

2
divides the trees in two main classes, the Up binary trees

(θ <
π

2
), with a tip set connected above the trunk, and the Down binary trees

(θ >
π

2
), with a tip set intersecting the trunk. The diagram of Figure 3 shows

a Cartesian map, r versus θ, of the binary trees Mandelbrot set, the secondary

critical trees (T2(rsc, π/4) and T2(rsc, 3π/4)), two different class trees close to the

H-tree, and the four self-contacting symmetric binary trees that scale with the

golden ratio. The interesting properties of these four golden trees where first

noted and described by Tara Taylor [Taylor 2005][Taylor 2007].

2. Generalized Up and Down Symmetric Fractal Trees

The H-tree, θ =
π

2
, that separates the two main classes of symmetric binary trees

can be generalized to mirror-symmetric trees with b equally-spaced branches per

node and θ =
π

b
, see Figure 6. These trees play an analogous role for symmetric

trees with b > 2 branches per node. Thus, generalized symmetric fractal trees are
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also divided in two different classes: the Up symmetric fractal trees with their tip

set connected above the trunk, and the Down symmetric fractal trees with their

tip set intersecting the trunk, see Figures 5,7,8 and 10.

Any generalized symmetric tree can be characterized using three parameters: the

angle θ between the linear extension of the trunk and the branch L1, the length

r < 1 of this branch, and the number of branches b with length r. They are

denoted by DTb(r, θ) or UTb(r, θ) depending on its class, down or up respectively.

Again, the bilateral mirror symmetry around the linear extension of the trunk

enables us to label all the branches with addresses that are finite sequences of

letters. The n left branch is Ln, the down branch is D, the up branch is U and the

n right branch is Rn. Like in symmetric binary trees, when the infinite address

of a tip is eventually periodic, closed expressions for its coordinates can be found

by summing the appropriate geometric series. The fact that they also posses

well-defined critical angles, and a countable set of relevant addresses, allows us to

deduce the generalized self-contacting boundary equations for all the families of

symmetric fractal trees.

3. Tip-to-Tip Self-Contact for Down Symmetric Trees

For down symmetric fractal trees DTb(r, θ) the branch angle turns are:

Ln → (θ + (n− 1)α)

Rn → (−θ − (n− 1)α)

D → 0

where the angle α between secondary branches is given by α =
2(π − θ)

b− 1
.

Self-contact occurs when a tip can be accessed by different branch addresses with-

out crossings, for example, the addresses L2L1(L1R1)
∞ and R2R1(R1L1)

∞ in

Figure 5 represent the same tip.

Note that, for DTb with even number of branches b, the self-similarity and left-

right symmetry of the tree imply that self-avoidance is guaranteed if none of the

branch descendants of the first left branch Lb/2 intersects the trunk. Tip-to-tip

self-contact occurs where the rightmost branch tip of the left half of the tree meets

the trunk. Again, the scaling ratio that ensures self-contact rsc depends on the
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Figure 5: First branch addresses for Down Symmetric Fractal Trees with even b.

angle θ and the number of branches b.

For
(b+ 1)π

2b
≤ θ ≤ π the relevant address is Lb/2(L1R1)

∞; that is, after the initial

Lb/2 branch, the branches alternate bearing left L1 and right R1. Combining all

like terms, we see that the branch tip lies on E if its x coordinate is 0; that is, if:

r sin

(

( b
2−1)(2(π−θ))

b−1 + θ

)

+
∑

∞

i=1 r
2i sin

(

( b
2−1)(2(π−θ))

b−1 + 2θ

)

+
∑

∞

i=1 r
2i+1 sin

(

( b
2−1)(2(π−θ))

b−1 + θ

)

= 0;

This expression can be reduced and solved explicitly for r:

r
(

sin
(

π−θ
b−1

)

+ r sin
(

π−bθ
b−1

))

r2 − 1
= 0 −→ rsc = − sin

(

π − θ

b− 1

)

csc

(

π − bθ

b− 1

)

(4)
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Figure 6 shows the families of boundary equations which determine the length rsc

of the L1 branch as function of the angle θ. The red smooth pieces in the interval
(b+ 1)π

2b
≤ θ ≤ π represent the family of self-contacting trees given by (4). The tip

set of these trees form generalized von Koch curves different from the commonly

encountered in the literature [Keleti]. They have interesting properties related the

diagonals of regular polygons, and their tip set remains connected as a 3D fractal

curves when their branches are being unfolded [Espigule 2013A].

For
π

b
≤ θ <

(b+ 1)π

2b
, there are two kinds of relevant addresses, Lb/2Ln(R1L1)

∞

and Lb/2Ln(L1R1)
∞, which alternate each other for every n at well defined critical

angles; starting with the addresses Lb/2L1(R1L1)
∞ at the angles

(b + 1)π

2b
and

ending at θ =
π

b
when the letter Ln becomes L(2+b)/4 or L(4+b)/4 depending on b.

For the angle intervals π(b−4n+3)
2(b−2n+1) ≤ θ < π(b−4n+5)

2(b−2n+2) the relevant addresses are

Lb/2Ln(R1L1)
∞. The subindex n takes all the integer values from 1 to (2 + b)/4.

Here, again a closed expression for r can be deduced:

r sin

(

( b
2−1)(2(π−θ))

b−1 + θ

)

+ r2 sin

(

( b
2−1)(2(π−θ))

b−1 + θ + (2(π−θ))(n−1)
b−1 + θ

)

+
∑

∞

i=2 r
2i−1 sin

(

( b
2−1)(2(π−θ))

b−1 + θ + (2(π−θ))(n−1)
b−1 + θ − θ

)

+
∑

∞

i=2 r
2i sin

(

( b
2−1)(2(π−θ))

b−1 + θ + (2(π−θ))(n−1)
b−1 + θ − θ + θ

)

= 0

this can be reduced to the following implicit equation:

r(r(sin( θ(b−2n+2)+π(2n−3)
b−1 )+r sin( (π−θ)(2n−3)

b−1 ))+(r2−1) sin( π−θ
b−1 ))

r2−1 = 0

which can be solved for r to obtain the following closed form:

r =
2 sin(π−θ

b−1 )
√

sin2(π(3−2n)−θ(b−2n+2)
b−1 )+4 sin(π−θ

b−1 )(sin(
π−θ
b−1 )+sin( (π−θ)(2n−3)

b−1 +2θ))+sin( θ(b−2n+2)+π(2n−3)
b−1 )

(5)

The plots for this families of equations (5) are represented in blue, see Figure 6.
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Figure 6: Self-Contact Curves rsc(θ) for Generalized Down Symmetric Trees.
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For the angle intervals π(b−4n+5)
2(b−2n+2) ≤ θ < π(b−4n+7)

2(b−2n+3) the relevant addresses are

Lb/2Ln(L1R1)
∞. The subindex n takes the integer values from 2 to (4+ b)/4. An

analogous calculation to the other kind of addresses can be carried out as follow:

r sin

(

( b
2−1)(2(π−θ))

b−1 + θ

)

+ r2 sin

(

( b
2−1)(2(π−θ))

b−1 + (2(π−θ))(n−1)
b−1 + θ + θ

)

+
∑

∞

i=2 r
2i−1 sin

(

( b
2−1)(2(π−θ))

b−1 + (2(π−θ))(n−1)
b−1 + θ + θ + θ

)

+
∑

∞

i=2 r
2i sin

(

( b
2−1)(2(π−θ))

b−1 + (2(π−θ))(n−1)
b−1 + θ + θ + θ − θ

)

= 0

reducing it we obtain the following families of implicit equations:

r(r(sin( θ(b−2n+2)+π(2n−3)
b−1 )+r sin( 2bθ+θ−2θn+2πn−3π

b−1 ))+(r2−1) sin( π−θ
b−1 ))

r2−1 = 0

which can be solved explicitly for r:

rsc =

√

sin2( π(3−2n)−θ(b−2n+2)
b−1 )+4 sin(π−θ

b−1 )(sin(
π−θ
b−1 )+sin( (π−θ)(2n−3)

b−1 ))+sin( π(3−2n)−θ(b−2n+2)
b−1 )

2(sin(π−θ
b−1 )+sin( (π−θ)(2n−3)

b−1 ))

(6)

This families of equations (6) are represented in red, and they are grouped in

families of values n = 2, 3, ...,∞. The first family n = 2 starts at θ = π
2 .

The three types of general equations deduced for down trees with even b are also

valid for trees with odd number of b branches per node. It is an easy exercise

to show that down symmetric fractal trees with odd b, see Figure 7, have tip-to-

tip conditions that provide the same families of equations (4), (5) and (6). The

smooth curves represented in Figure 6 parameterize the families of self-contacting

down symmetric fractal trees, DTb(rsc, θ).

4. Tip-to-Tip Self-Contact for Up Symmetric Trees

The turning angles associated to the address letters Ln, Rn and U in up symmetric

fractal trees UTb(r, θ) are:
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Figure 7: First branch addresses for Down Symmetric Fractal Trees with odd b.

Ln → (θ − (n− 1)α)

Rn → (−θ + (n− 1)α)

U → 0

The term α is the angle between neighboring branches and it is given by α =
2θ

b− 1
.

For UTb with even number of branches b, see Figure 8, the self-similarity and left-

right symmetry of the tree imply that self-avoidance is guaranteed if none of the

descendant branches of the first left branch Lb/2 intersects the linear extension E

of the trunk. Tip-to-tip self-contact occurs where the rightmost branch tip of the

left half of the tree lies on E.

For the angle intervals π
2 ≤ θ ≤ π(b−1)

b , there are two kinds of relevant addresses

when b is even.

The first kind of addresses has the form L b
2
Rn

(

R b
2
L b

2

)

∞

. They take place in the

intervals π(b−1)
2(b−2n+1) ≤ θ ≤ π(b−1)

2(b−2n) from n = 1 to n =
b

4
. And when the condition

x = 0 is imposed, their families of self-contacting equations are:
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Figure 8: First branch addresses for Up Symmetric Fractal Trees with even b.

rsc =

√

sin2
(

θ(b−2n)
b−1

)

− 4 sin
(

θ
1−b

)(

sin
(

θ
b−1

)

+ sin
(

θ(b−2n+1)
b−1

))

− sin
(

θ(b−2n)
b−1

)

2
(

sin
(

θ
b−1

)

+ sin
(

θ(b−2n+1)
b−1

))

(7)

The second kind of addresses has the form L b
2
Rn

(

L b
2
R b

2

)

∞

, which take place in

the intervals π(b−1)
2(b−2n) ≤ θ ≤ π(b−1)

2(b−2n−1) from n = 1 to n =
b− 2

4
. Their families of

self-contacting equations is given by:

rsc =

√

sin2
(

θ(b−2n)
b−1

)

− 4 sin
(

θ
1−b

)(

sin
(

θ
b−1

)

+ sin
(

θ(b−2n−1)
b−1

))

− sin
(

θ(b−2n)
b−1

)

2
(

sin
(

θ
b−1

)

+ sin
(

θ(b−2n−1)
b−1

))

(8)

Figure 9 shows the smooth curves for generalized up symmetric fractal trees. The

equations (7) are represented in red, and the equations (8) are colored in blue.
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Figure 9: Self-Contact Curves rsc(θ) for Generalized Up Symmetric Trees with even b.

For the remaining interval 0 < θ ≤ π
2 , the boundary curves are partitioned in a

rather complicated way. Additionally to the critical angles
π

4
,
π

6
,
π

8
, ... found in up

binary trees, see Figure 2, when the number of branches b gets bigger and bigger,

more and more secondary critical angles start to appear in-between. Nonetheless

the two kinds of relevant addresses can be presented in the following forms:

L b
2
(R1)

jR b
2−n

(

L b
2
R b

2

)

∞

for the intervals π(b−1)
2(b−1)j+4n+2 ≤ θ ≤ π(b−1)

2(b−1)j+4n , where the index j takes the values

from 1 to ∞, and for each j, n takes the values from n = 0 to n = b
2 − 1.

and

L b
2
(R1)

jR b
2−n

(

L b
2
R b

2

)

∞

for the intervals π(b−1)
2(b−1)j+4n ≤ θ ≤ π(b−1)

2(b−1)j+4n−2 where the index j takes the values

from 1 to ∞, and for each j, n takes the values from n = 1 to n = b
2 − 1.
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The first kind of addresses provides the following families of implicit equations:

rj+2(sin( θ((b−1)j+2n)
b−1 )+r sin( θ((b−1)j+2n+1)

b−1 ))
r2−1 +

rj+2 sin(θ( 1
1−b

+j+1))
r2−2r cos(θ)+1

+
rj+3 sin(θ( 1

b−1−j))
r2−2r cos(θ)+1 −

r2 sin( (b−2)θ
b−1 )

r2−2r cos(θ)+1 +
r sin( θ

1−b )(2r cos(θ)−1)

r2−2r cos(θ)+1 = 0

(9)

And the second kind of addresses leads to the following families of implicit equa-

tions:

rj+2 sin( θ((b−1)j+2n)
b−1 )

r2−1 +
rj+3 sin( θ((b−1)j+2n−1)

b−1 )
r2−1 +

rj+2 sin( θ((b−1)j+b−2)
b−1 )

r2−2r cos(θ)+1

−
rj+3 sin( θ((b−1)j−1)

b−1 )
r2−2r cos(θ)+1 +

r(r sin( bθ
1−b )−sin( θ

1−b ))
r2−2r cos(θ)+1 = 0

(10)

The smooth pieces defined by (9) and (10) are represented in blue and red respec-

tively, see Figure 9.

Figure 10: First branch addresses for Up Symmetric Fractal Trees with odd b.

For UTb with odd number of branches b, see Figure 10, the relevant self-contact

pair of tips lies outside the linear extension of the trunk. The condition imposed

here is that the self-contacting tips must have the same coordinates, or simply

that their vertical coordinates must be equal, y = y.

For the intervals π
2 ≤ θ ≤ π(b−1)

b , the relevant tip pairs have the following form:
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ULn(U)∞ = L b−1
2
Rn(U)∞ in the intervals π(b−1)

2(b−2n+1) ≤ θ ≤ π−πb
−2b+4n+2 for every n

with values from n = 0 to n = b−3
2 . Imposing the condition y = y the following

family of self-contacting equations is deduced explicitly for rsc:

rsc =
1

1− csc
(

θ
1−b

)

sin
(

θ(b−2n)
b−1

) (11)

Figure 11: Self-Contact Curves rsc(θ) for Generalized Up Symmetric Trees with odd b.

For the remaining interval 0 < θ ≤ π
2 , the boundary curves are partitioned in a

similar way for this found for b even. This time, there is only one kind of implicit

equations, and it is deduced from the following family of relevant tip pairs:

L b−1
2

(R1)
j(R b−1

2 −n)
∞ = UL1 (L1)

jL b−1
2 −n(U)∞, which are valid for the intervals

π(b−1)
2(b−1)j−4n+4 ≤ θ ≤ π(b−1)

2(b−1)j−4n , with values n from 0 to b−3
2 and j from 1 to ∞.

Summing up the appropriate vertical terms for both tips, we obtain the following

families of implicit equations:
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rj+2(sin( θ((b−1)j+2n)
b−1 )+sin( θ((b−1)j+2(n+1))

b−1 ))
r−1 +

rj+2(sin( θ((b−1)j+b−3)
b−1 )+sin(θ(j+1)))

r2−2r cos(θ)+1

+
rj+3(sin( θ(−bj+j+2)

b−1 )−sin(θj))
r2−2r cos(θ)+1 −

r2(sin( (b−3)θ
b−1 )+r sin( 2θ

b−1 )+sin(θ))
r2−2r cos(θ)+1 + r sin

(

2θ
b−1

)

= 0

(12)

The boundary curves for UTb(r, θ) with odd number of branches b are represented

in Figure 11.

5. Fractal Dimension for Generalized Symmetric Trees

When UTb(r, θ) or DTb(r, θ) have no double point, it is said to be self-avoiding.

If so, the branch tips are distinct points and, like the points in a Cantor set,

are non-denumerable. Their tip set form a self-similar fractal of dimension D =

log(b)/log(1/r). For r < 1/b, UTb(r, θ) and DTb(r, θ) are always self-avoiding

regardless of the value of θ. However, for 1/b < r < 1, the tree may or may not be

self-avoiding, depending on θ. The dimension of the tip set for a self-contacting

tree is given by D = log(b)/log(1/rsc).

6. Final Remarks

The broader class of symmetric fractal trees and their self-contacting equations

presented here, generalize and extent the previous works of Mandelbrot, Frame,

Pagon, and Taylor on the special case of self-contacting symmetric binary fractal

trees [Mandelbrot][Pagon][Taylor2005][Taylor2007]. Furthermore, the down self-

contacting trees given by eq.(4) and represented in Figure 6, were found to be

associated to an interesting type of self-contacting symmetric fractal trees that

provide a new generalization to the von Koch curves [Espigule 2013A]. For more

examples and further details about fractal trees, the reader is encouraged to visit

the author’s website dedicated to fractal trees, with fully detailed maps, galleries,

animations and interactive Mathematica’s CDF documents, as well as an extensive

annotated bibliography [Espigule 2013B].
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