
Physically Based 
Rendering

An advanced practicum by Michael Pronkin



Overview

● PBR
○ intro
○ BRDF (bidirectional reflectance distribution function)
○ materials
○ IBL (image based lighting)

● implementation
○ Deferred Rendering
○ GBuffer for PBR
○ material data structure

● outlook
○ gltf
○ PBR in the industry

2



Intro to PBR
(Physically Based Rendering)

3



From Marmoset Toolbag Tutorials: Physically-Based Rendering, And You Can Too!, by Joe "Earthquake" Wilson 4



From Marmoset Toolbag Tutorials: Physically-Based Rendering, And You Can Too!, by Joe "Earthquake" Wilson 5



6



7



8



9



BRDF (bidirectional reflectance distribution function)

Describes reflection of light from a point on a surface

From https://github.com/moneimne/glTF-Tutorials/tree/master/PBR/figures 10



From https://github.com/moneimne/glTF-Tutorials/tree/master/PBR/figures 11

shadowing

Geometric Occlusion

interreflection masking



f(l, v, n) = Diffuse(l, n) + 

BRDF: Lighting Function

F(l, h) G(l, v, h) D(h)
4(n · l)(n · v)

● l := light direction
● v := view direction
● h := light view halfway vector
● n := normal vector

12

Diffuse Term
(Lambert)

Specular Term
(Cook-Torrance)



Diffuse(l, n) = l · n

BRDF Diffuse Term (Lambert)

● l := light direction
● n := normal vector

13



14



BRDF Specular Term (Cook-Torrance)

● l := light direction
● v := view direction
● h := light view halfway vector
● n := normal vector

15

F(l, h) G(l, v, h) D(h)
4(n · l)(n · v)

● Fresnel Term
● Geometric Occlusion Term
● Distribution Term



BRDF Specular Term (Fresnel)

● F0 := specular reflectance at normal incidence
● l := light direction
● h := light view halfway vector

16

F(l, h) G(l, v, h) D(h)
4(n · l)(n · v)

Fschlick_gauss(l, h) = F0 + (1 − F0) × (1 − v · 
h)5



17



BRDF Specular Term (Geometric Occlusion)

● r := roughness
● l := light direction
● v := view direction
● h := light view halfway vector

18

F(l, h) G(l, v, h) D(h)
4(n · l)(n · v)

Gschlick(l, v, h) = G1(n, l) × G1(n, v)

G1(n, v) = 
2 × (n · v)

(n · v) + √r2 + (1 - r2)(n · v)2



BRDF Specular Term (Distribution)

● r := roughness
● h := is actually n · h for this term

19

F(l, h) G(l, v, h) D(h)
4(n · l)(n · v)

Dggx(h) = 
r4

π((n · h)2 × (r4 - 1) + 1)2



IBL (image based lighting)

● cubemap (or similar)
● multiple resolutions
● for both diffuse and specular
● point/area lights optional
● HDR (high dynamic range)

20



from https://3dcoat.com/pbr/ 21



from https://3dcoat.com/pbr/ 22



implementation

● BRDF code
● Deferred Rendering
● GBuffer for PBR
● irradiance/reflection maps
● material data structure

○ glTF format

23



BRDF code

24



Deferred Rendering vs. Forward Rendering
● Lights per fragment 

(less complexity)
● Only calculates visible pixels

(screen space deferral)
● Requires buffers 

(multi render target)
● Anti-aliasing more difficult

● Lights per vertex
● Requires additional calculations 

for invisible geometry avoidance
(or naively calculate all invisible)

● Much lower overhead in memory

25



Gbuffer for PBR

● albedo
● normal/roughness
● specular/IOR
● position/depth

26



Gbuffer code

27



Gbuffer code continued

28



materials

components:

● albedo (“color”)
● metalness (“metal or dielectric”)
● roughness (“rough to smooth”)

29



from https://3dcoat.com/pbr/ 30



31



from https://3dcoat.com/pbr/ 32



33



34



from https://3dcoat.com/pbr/ 35



from https://3dcoat.com/pbr/ 36



PBR vs. traditional shading

● higher memory overhead
● much higher visual 

impact
● closer approximation of 

photorealism

● Simple to understand 
and implement

● useful for prototyping
● easy to run on very old 

hardware

37



● New format for PBR based scenes
● Application independent
● compact size
● fast loading
● open and extensible
● you can follow all development at

https://github.com/KhronosGroup/glTF

glTF

38



PBR in the industry

39



demo time!



thanks!


